A WORLDWIDE PARTNER FOR OPERATIONAL EXCELLENCE

With more than 40 years of technical training experience, GE has pioneered the art of long-term skill development. All GE Digital Solutions product training is conducted by our core group of instructors and experienced Field Engineers to provide a world-class training experience. Digital Solutions offers comprehensive hands-on instructor-led courses designed to help you protect and manage all your machinery. Our training techniques are proven and we have strong regional expertise in over 50 countries and multiple languages with courses held at various GE training locations around the world or your local facility.

We provide a training curriculum and consulting services for applications involving all facets of power generation, mechanical drives and petrochemical industries. Our services include needs and gap analysis, objective development and skills based training solutions. GE Digital Solutions technical training programs provide you the knowledge and skills required to optimize the performance of your equipment and technology. As an overall, it will maximize your return-on-investment by ensuring machinery availability and reliability, by avoiding unplanned events and limiting disruption risks and costs.

+ 53 technical training centers
+ 15 training modules in multiple languages
+ A pool of 42 certified and experienced trainers
+ Training on new and legacy Bently Nevada products and solutions
+ Real-size equipment and rotor kits for practice
+ Fully equipped dedicated training rooms
+ Individual technical documentation

REGISTER ONLINE: https://www.gemeasurement.com/services/bently-nevada-training
GE training centers provide a full range of training in Bently Nevada solutions, near your location. These courses which encompass all aspects from fundamentals to in-depth solution knowledge are based on several value-added pillars.

EXPERIENCE from our Bently Nevada field engineers and technical experts. With more than 40 years of technical training experience, GE has pioneered the art of long-term skill development.

TECHNICAL EXPERTISE with 42 experienced trainers in Europe. Our team combines product installation, operation, maintenance or engineering experience with technical expertise, proven teaching skills and a commitment to knowledge transfer.

HANDS-ON WORKSHOP to guarantee operational excellence and to ensure trainings combine theory and practice. Workshops include practice with 'live' monitors and racks. Class sizes are kept small to ensure that students have the opportunity to fully explore the capabilities of the system. As a result, it will help you protect your machinery.

CUSTOMIZED TRAINING to fit with your needs and enhance your teams performance. With 15 training modules in different languages, you will find the courses adapted to your trainee’s knowledge (operators, managers, engineers...) and objectives. A training curriculum can be developed, including needs and gap analysis, objective development, and skills based training solutions.

UP-TO-DATE MATERIAL to optimize learning. Course content and workshops are continually revised to reflect latest technologies, experience and local regulatory standards.
MODULAR TRAINING

Our core curriculum includes 15 training modules with an emphasis on practice. The benefits of training on real equipment is instantaneous. In small groups, trainees learn both theory and practice, the “why” and the “how-to”. Courses are adapted to your profile.

SKILLS DEVELOPMENT PROGRAM

In addition to scheduled training programs, GE also works with you to develop a comprehensive Skills Development Program specifically designed to address your needs. It will help you to build sustainable competencies and maximize your return on investment on condition monitoring technologies.

The first step in our Skills Development Program is establishing a role-based competency matrix. This will be achieved by combining your organization’s job descriptions and condition monitoring best practices from GE. All members of the team will be assessed against competency matrix specific to their role to identify skills and competency gaps. Based on the skills gaps identified, condition technologies deployed at site and operational constraints, a roadmap to build sustainable competencies will be developed.

By using customized training content, our certified instructors will conduct training sessions at your site. Later, employees will work on identified on-job training opportunities under the mentorship of our technical experts to acquire valuable practical skills and build confidence in facing key challenges in your facility. As we progress through the program, our technical experts will mentor key personnel from your organization as “power users” of the products and systems. These power users equipped with plant-specific knowledge and advanced awareness of the systems will be able to extract maximum benefit from the systems deployed and improve the ROI.
OUR TRAINING CENTERS

AFRICA
BNtraining.MEA@ge.com
Algeria | Algiers
Nigeria | Port Harcourt
South Africa | Midrand

ASIA
BNtraining.AS@ge.com
Australia | Brisbane
Australia | Jandakot
Australia | Perth
Australia | Sydney
Indonesia | Jakarta
Japan | Tokyo
Korea | Seoul
Malaysia | Kuala Lumpur
Singapore
Thailand | Rayong

EUROPE
BNtraining.EU@ge.com
Austria | Vienna
ISO certification center
France | Nantes
Germany | Frankfurt
Greece | Athens
Italy | Florence
Netherlands | Rotterdam
Norway | Bergen
Russia | Moscow
Spain | Madrid
UK | Skelmersdale

LATIN AMERICA
BNtraining.LA@ge.com
Argentina | Buenos Aires
Brazil | Campinas
Brazil | Rio de Janeiro
Chile | Antofagasta
Chile | Santiago
Colombia | Bogota
Colombia | Cartagena
Costa Rica | San Jose
Mexico | Mexico city
Panama | Panama
Trinidad | Point Lisas
Venezuela | Maracaibo

MIDDLE EAST
BNtraining.MEA@ge.com
Bahrain
Kuwait | Kuwait city
Oman | Muscat
Pakistan | Lahore
Qatar | Doha
Saudi Arabia | Dhahran
Saudi Arabia | Jubail
Saudi Arabia | Khobar
Saudi Arabia | Yanbu
Turkey | Istanbul
UAE | Abu Dhabi
UAE | Dubai

NORTH AMERICA
BNtraining.NA@ge.com
Canada | Fort McMurray
Canada | Edmonton
USA | Houston, TX
USA | Minden, NV

OUR COURSES

BASICS
Fundamentals of Vibration

SYSTEMS & INSTRUMENTATION
3500 System O&M
System 1* Fundamentals
System 1* Evo for Portables
ADRE 408

MACHINERY DIAGNOSTICS
Machinery Diagnostics
Applied Diagnostic Workshop
Advanced Machinery Dynamics
Advanced Field Balancing
Reciprocating Compressor CMD

ISO CERTIFICATION
Vibration Analyst Cat. I
Vibration Analyst Cat. II
Vibration Analyst Cat. III
Fundamentals of Vibration

Duration
2 days (14 hours)

Audience
- Technicians with a limited experience on vibration machinery.
- Technicians working on vibration control with condition monitoring program.
- Engineers involved in condition monitoring.
- Technicians in preventive maintenance.

Objectives
- Explain the reasons for vibration monitoring and maintenance strategies.
- Learn key components and describe vibration motion in a measurement plane.
- Define the parameters used to measure vibration motion and state the units used to express each parameter.
- Describe the principles of vibration transducer operation, the benefits and disadvantages of each type, and typical scale factor of output signal. Apply selection criteria to choose a useable vibration transducer for a specific machine vibration.
- Read values of amplitude, frequency, phase and recognize sources of vibration indicated by waveform and spectrum plots.

Program

Day 1
- Machinery Monitoring: history, benefits, and strategies. Typically Monitored Machines and Considerations
- Basic Vibration Concepts: definition of vibration, understanding relationships of vibration displacement, velocity, acceleration, units of amplitude and meaning of vibration amplitude in analysis
- Defining frequency, units of frequency, and meaning of frequency in analysis, defining phase and measuring relative and absolute phase, understanding natural frequencies

Day 2
- Vibration Transducers: theory of accelerometer operation, theory of Velomitor operation, theory of Proximity Transducer System operation
- Workshops identifying amplitude, frequency and phase from timebase and spectrum plots. Workshops for transducer and monitoring systems for given machine scenarios

Learning path

Prerequisites
New in condition monitoring and control of machinery

Next steps
- System & Instrumentation courses
- Machinery Diagnostic courses

BENEFITS
Basics on measurement, parameters, monitoring approach and used transducers.
3500 Operation & Maintenance

Objectives

- Explain the role of 3500 Monitoring System in machinery monitoring and protection.
- Identify installation conditions that affect the correct operation of proximity transducer systems.
- Test monitor alarms and verify channel values in a radial vibration monitor.
- Use GE propriety configuration software to configure and/or reconfigure the 3500 monitor system.
- Troubleshoot the 3500 monitor system and associated transducers using software and hardware techniques.

Program

Day 1
- Overview of 3500 Monitoring System
- 3300 Proximity Transducer System Operation
- 3500 Monitor System Support Components
- TDI/RIM Hardware Connections and Communications
- Power Supply, TDI/RIM, and Keyphasor Configuration

Day 2
- Radial Vibration
- Thrust Position
- Relays

Day 3
- 3500 System Utilities
- 3500/92 Communications Gateway (Optional)
- Troubleshooting 3500 System
- Data Acquisition/DDE Server Software (Optional)
- Reciprocating Compressors (Optional)

Optional: The last day focus can vary depending on audience need.

Learning path

Prerequisites
- Fundamentals of vibrations (VIBFU)
- Review of data acquisition CBT solution (Reference 168836-01-01)

Next steps
- Specific courses
- Machinery Diagnostics courses

BENEFITS

Practice workshops with ‘live’ monitors and racks.

Duration
3 days (21 hours)

Audience
- 3500 monitoring system users.
- Engineers involved in maintenance and troubleshooting of 3500 monitoring system.
- Instrument technicians.
System 1* Fundamentals

Duration
3 days (21 hours)

Audience
- System 1 Platform Users.
- Reliability Engineers.
- Condition Monitoring Engineers.
- Engineers involved in Preventive Maintenance.

Objectives
- Use various System 1 software tools and plots to detect subtle changes in asset condition.
- Retrieve and display data in bar graphs and various plot formats.
- View alarms and events in the event manager.
- Enter observations and notes with the journal editor. Use DOCUVIEW* to create links to various reference documents.
- Create reports on monitored plant assets.
- Gain a practical understanding of how our communication processors such as TDI or TDXnet™ collect transient data.

Program

Day 1
- System 1 Overview
- Viewing Information with System 1 Display
- Event Manager and Asset Active Alarm in System 1 Display
- Customizing Trend Plots

Day 2
- Vibration Signal Fundamentals
- Introduction to Plot Sessions and Plot Groups
- Working with Plot Session and Plot Groups
- Shaft Centerline Plots
- Plotting Dynamic Data and Using Collection Groups

Day 3
- Collecting Data in Transient Mode
- System 1 Asset Information Storage
- System 1 Administrative Tasks

Learning path

Prerequisite
- Fundamentals of vibrations (VIBFU)
- Review of data acquisition CBT solution (Reference 168836-01-01)

Next steps
- Specific courses
- Machinery Diagnostics courses

BENEFITS
Practise workshops on efficient use of the platform to support decision making.
System 1* Evolution for Portables

Objectives

- Understand portable data measurement.
- Use the Scout or Vb instrument to collect data and then send to System 1 Evolution.
- Use the Status tab and Plots tab to analyze the collected data.
- Analyze faults and alarms.
- Manage access through the Security Manager.

Program

- Installation
- Licensing Proficy Historian and System 1
- Asset Building
- Instrumentation
- Route Building
- SCOUT
- Data Collection – SCOUT 100/Vb Series
- Analyzing Collected Data
- Faults and Alarms
- 6 Pack and Individual Points (with optional Rack Buffered Outputs)
- Database Manager
- Creating Templates
- Data Analysis and Diagnostics (Demo Database)
- Remote Communication

Learning path

Prerequisite

- Fundamentals of vibrations (VIBFU)
- Review of data acquisition CBT solution (Reference 168836-01-01)

Next steps

- Specific courses
- Machinery Diagnostics courses

BENEFITS

Practice workshops at each step of the course.

Duration

3 days (21 hours)

Audience

- System 1 Platform Users.
- Reliability Engineers.
- Condition Monitoring Engineers.
- Engineers involved in Preventive Maintenance.
ADRE 408 DSPi/Sxp

Objectives
- Configure ADRE system to collect machinery data.
- Acquire data effectively for real-time analysis.
- Display vibration and other data types using various plot types for machine condition analysis.
- Edit, document, and store databases for future use.

Program

Day 1
- Overview and Introduction
- Using the Front Panel
- Communication and Networking
- Vibration Fundamentals
- Planning Data Sampling
- Basic Sampling

Day 2
- Static Data Plotting
- Signal Processing
- Dynamic Data Plotting
- Advanced Sampling

Day 3
- Using the ADRE 408 Replay Card
- Collecting and replaying raw continuous data
- Sharing and Exporting Data
- Advanced Utilities

Learning path

Prerequisites
- Fundamentals of vibrations (VIBFU)
- Review of data acquisition CBT solution (Reference 168836-01-01)

Next steps
- Specific courses
- Machinery Diagnostics courses

Benefits
Advanced database manipulation tools.

Duration
3 days (21 hours)

Audience
- Adre 408 Users.
- Portable Data Collectors.
- Condition Monitoring Engineers.
- Engineers involved in Preventive Maintenance.
Machinery Diagnostics

Duration
5 days (35 hours)

Audience
- Engineers interpreting machine vibration and position data to determine machine condition.
- Engineers involved in the design, acceptance testing, and maintenance of rotating machinery.
- Engineers desiring to learn about machinery vibration diagnostic.
- Engineers and technicians.

Objectives
- Understand how the fundamentals of machine design and behavior are reflected in the vibration measurements.
- Learn how to reduce machine vibration data into usable plot formats. Learn which plot formats are best to use in the different stages of machine diagnostics.
- Learn the causes, affects and indicators of the typical machine malfunctions; including recognition of problems such as unbalance, misalignment, rubs, shaft cracks and fluid induced instabilities.

Program

Day 1
- Introduction to Machinery Management & Diagnostics
- Phase Measurements
- Steady State Data Formats

Day 2
- Fundamental Synchronous Rotor Response
- Single Plane Balance Response
- Transient Data Formats

Day 3
- Plot Interpretation
- Multiplane Balance Response
- Partial Radial Rubs

Day 4
- Preloads and Radial Position Measurements
- Vibration Types and Resonances
- Fluid-Induced Instabilities

Day 5
- Shaft Crack Detection
- Case History Workshop

Learning path

Prerequisites
- Fundamentals of vibrations (VIBFU)
- Review of data acquisition CBT solution (Reference 168836-01-01)

Next steps
- Machinery Applied Diagnostics Workshops (ADW)
- Advanced Machinery Dynamics (AMD)

BENEFITS
Fundamentals to be confident in operation decision making.
Applied Diagnostics Workshops

Duration

5 days (35 hours)

Audience

- Engineers and technicians involved in the analysis and interpretation of vibration data.
- New machinery diagnosticians willing to gain knowledge and confidence.
- Experienced diagnostics people willing to gain additional insight needed to efficiently solve complex machinery problems.
- Engineers and technicians.

Objectives

- Practice on different rotating machine types and review of typical malfunctions associated.
- Analyze actual machine case histories using System 1 or ADRE databases.
- Organize data in plot formats believed to be indicative of the machinery fault.
- Present conclusions and make recommendations to solve complex machinery problems.
- Learn about malfunctions and conduct diagnosis on real machine data from the field.

Program

Covered Malfunctions

- Unbalance
- Lose parts
- Preload and misalignment
- Instability
- Shaft crack
- Rub
- Thermal unbalance
- Coupling lockup
- ESD...

Machinery Cases

- Steam turbines
- Gas turbines
- Motors
- Centrifugal compressors
- Generators
- Exciters
- Gear boxes
- Pumps
- Fans

Learning path

Prerequisites

- Machinery Diagnostics (MD)
- ISO certification Level 3

Next steps

- Advanced Machinery Dynamics (AMD)

BENEFITS

Customized training according to equipment.

Be proficient in using the System 1* or ADRE systems.
Advanced Machinery Dynamics

Objectives

- Use rotor modeling, actual machine data and case histories.
- Be able to recognize, explain, and account for effects of more complex rotor dynamics interaction of modes, mode shapes, thermal changes, earing design, torsional vibration and structural modes.
- Understand critical speeds and its impacts on resonances and natural frequencies.
- Learn about mode shape, undamped/damped modes and effects of bearing characteristics.

Program

- Rotor Modeling as a Machinery Diagnostics Tool
- Rotor Model
- Bearing Design (Fluid bearings and Magnetic bearings)
- Balancing Machines
- Rotor to Stator Rubs
- Diagnose and Control of Fluid Induced Instabilities
- Shaft Cracks
- Signal processing
- Tortional Vibration
- Impact Testing and Analysis

This training includes real-life demonstration and 25 case studies.

Duration

5 days (35 hours)

Audience

- Engineers desiring to advance their machinery vibration diagnostics skills.
- Engineers involved in the design, acceptance testing, and maintenance of rotating machinery.
- Academic researchers and professors involved in rotor dynamics.
- Post-graduate engineering participants.

Learning path

Prerequisites

- Machinery Diagnostics (MD)
- ISO certification Level 3

Next steps

BENEFITS

For each theme, some historic cases will be used to show practice of each technique.
Advanced Field Balancing

Duration
3 days (21 hours)

Audience
- Machinery diagnosticians
- Startup engineers
- Remote diagnostic center specialists

Objectives
- Conduct effective balancing of machine trains in the field: calculation of trials, evaluation of results, decision making.
- Select strategy ensuring minimum disruption costs and proper data quality.
- Use calculation tools the most applicable to situation, evaluate inputs and outputs and recalculate between balancing methods and data conventions.
- Get a deep understanding of balancing process allowing effective supervision of solution weights installation and troubleshooting data integrity problems.

Program
- Fundamentals
 - Unbalance and other malfunctions with similar symptoms.
 - Making the decision, selecting the strategy.
 - Ensuring the repeatability and minimizing non-linearity.
 - Trial weight calculations.
- Basic calculations and conventions
 - Vector operations.
 - Locating the position of unbalance.
 - Finding angular location on a rotor.
- Single Plane Balancing with Workshop.
- Static/Couple Balancing with Workshop.
- Influence Vector Method (multiplane) Balancing.
- Bently Balance – introduction and data acquisition process.
- Bently Balance – configuration and importing data.
- Bently Balance – calculations and solution evaluation.
- Workshop: balancing in two planes, using Bently Balance*
- Relation between Static/Couple and Influence Vector methods.
- Workshop: influence vectors - import, export, recalculation between methods.
- Balancing for compromise conditions.
- Workshop/Examination – multiple planes balancing.

Learning path

Prerequisites
- Machinery Diagnostics (MD)

Next steps

BENEFITS
Deep understanding of balancing methods and confidence with hands-on practice on test rotors.
Reciprocating Compressor Condition Monitoring & Diagnostics

Objectives
- Understand the compression process and interpret vibration readings of reciprocating compressors.
- Relate reciprocating compressor components to various failure modes.
- Recognize and select plots used to assess the health of reciprocating compressors and interpret PV Plots.
- Calculate rod load conditions (reversal).
- Discover the full application and benefits of rod position instead of rod drop measurements.
- Conduct a compressor vibration analysis.

Program
- Basic Elements of Reciprocating Compressors
 - Compressor overview
 - Reciprocating compressors in industry
 - Components and Nomenclature
 - Lubrication Systems
 - Compressors Types
- How to Monitor a Reciprocating Compressor
- Importance of Vibration and Pressure Measurements
- Which Plots are Used to Evaluate the Health of the Reciprocating Compressor
- Monitoring Strategies
- Reciprocating Compressor Diagnostics:
 - Crosshead and Frame Vibration
 - Pressure Monitoring and Diagnostics
 - Rod Load and Rod Reversal
 - Reciprocating Compressor Capacity Control and the Impact on Vibration and Pressure Monitoring
 - Rod Position and Rod Drop Analysis
 - PV Analysis of Multistage Compressors
 - Workshops and Presentation of Case Histories

Learning path
Prerequisites
- Basic understanding of reciprocating compressor construction, nomenclature, and operation

Next steps

BENEFITS
Hands-on workshops at our Recip-kit and actual case histories.

Duration
3 days (21 hours)

Audience
- Engineers desiring to learn about reciprocating compressor components and mechanics.
- Engineers willing to understand reciprocating compressor performance theory.
- Engineers interpreting reciprocating compressor vibration and analyzing malfunctions to diagnose and optimize assets.
- Engineers involved in the design, acceptance testing and maintenance of reciprocating machinery.

Prerequisites
- Basic understanding of reciprocating compressor construction, nomenclature, and operation

Next steps

BENEFITS
Hands-on workshops at our Recip-kit and actual case histories.

BN.training@ge.com
ISO 18436 Category I
Basic Vibration Analyst Certification

Objectives
- Understand the benefits of performing condition monitoring and improving reliability.
- Learn how machines work and how vibration measurements assess the condition of the machine.
- Discover Fmax, resolution, averaging and other analyzer settings
- Analyze vibration spectra and the basics of fault diagnosis
- Set alarm limits (introduction)

Program
- Maintenance practices
- Condition monitoring
- Principles of vibration
- Introduction to vibration measurement
- An introduction to the time waveform
- An introduction to the spectrum
- An introduction to forcing frequencies
- Explaining the different vibration units
- A brief introduction to phase
- Data acquisition
- A quick review of data acquisition
- How do we measure vibration?
- Where to place the sensor on the machine

- Understanding axial, radial, vertical and horizontal readings
- A quick introduction to mounting the accelerometer and surface preparation
- Naming conventions
- What are « routes » and how do you create them?
- Signal processing
- A quick tour of your analyzer
- Spectral averaging
- Vibration analysis
- The spectrum analysis process
- What is resonance—a quick introduction
- Diagnosing common fault conditions
- Setting alarm limits

Learning path
Prerequisites
- 6 months of experience is required for certification

Next steps
- ISO 18436 Category II Intermediate Vibration Analyst Certification (CAT III)

Duration
4 days (28 hours)

Audience
- New vibration analysts.
- Engineers collecting vibration data.
- Engineers analyzing vibration data.
- Whoever wanting to develop skills in the field of machine condition & vibration analysis
- Whoever willing to get certified to international standards (ISO-18436)

BENEFITS
3D animations and software simulations make complex concept easier to understand.
ISO 18436 Category II
Intermediate Vibration Analyst Certification

Objectives
- Understand how a well-designed program and a reliability centered maintenance approach improve the bottom line.
- Discover the condition monitoring technologies.
- Learn how machines work and how to select the correct measurement and the optimum settings.
- Analyze vibration spectra, time waveforms, envelope and phase measurements.
- Diagnose and learn how to balance and align a machine and correct a resonance condition.

Program
- Review of maintenance practices
- Review of condition monitoring technologies
- Principles of vibration: review of basics, waveform, spectrum (FFT), phase and orbits
- Understanding signals: modulation, beating, sum/difference
- Data acquisition
- Signal processing
- Vibration spectrum analysis
- An introduction to time waveform analysis
- An introduction to orbit analysis
- Phase analysis: bubble diagrams and ODS
- Enveloping (demodulation), shock pulse, spike energy
- Fault analysis
- Equipment testing and diagnostics including impact testing (bump tests) and phasse analysis
- Corrective action
- Running a successful condition monitoring program
- Acceptance testing
- Review of ISO standards

Prerequisites
- 18 months of experience is required for certification

Next steps
- ISO 18436 Category III Advanced Vibration Analyst Certification (CAT III)

BENEFITS
Competence in quality data acquisition and diagnosing common machine faults.

Duration
5 days (35 hours)

Audience
- Engineers analyzing a range of fault conditions.
- Engineers willing to understand balancing and alignment.
- Engineers desiring to learn about machinery vibration diagnostic.
- Whoever willing to get certified to international standards (ISO-18436).
ISO 18436 Category III
Advanced Vibration Analyst Certification

Objectives
- Understand how a well-designed program and a reliability centered maintenance approach improve the bottom line.
- Discover the condition monitoring technologies.
- Analyze vibration spectra, time waveforms, enveloppe and phase measurements.
- Diagnose a wide range of fault conditions.
- Learn how to balance and align a machine, correct resonance conditions and employ isolation.

Program
- Review of condition monitoring technologies and the ISO standards
- Signal processing and data acquisition
- Time waveform analysis
- Phase analysis
- Dynamics (natural frequencies and resonance)
- Testing for natural frequencies
- Operating Deflection Shape (ODS) analysis
- Modal analysis and introduction to FEA
- Correcting resonances
- Rolling element bearing fault detection
- Journal bearing fault detection
- Electric motor testing
- Pumps, fans and compressors
- Gearbox fault detection
- Corrective action
- Running a successful condition monitoring program
- Acceptance testing
- Review of ISO standards

Prerequisites
- 36 months of experience is required for certification
- ISO Category II

Next steps
- ISO Category IV Master Analyst

BENEFITS
Developing knowledge of machine dynamics.

Duration
5 days (35 hours)

Audience
- Engineers confident in spectrum but willing to learn about signal processing, time waveform and phase analysis.
- Engineers involved in condition monitoring.
- Whoever willing to get certified to international standards (ISO-18436).
Be confident in your employees’ competences

We can start working on defining the competency matrix and setting up the competence development plan to make sure your team is equipped with all the knowledge and confidence to efficiently manage your assets.

For more information, visit:
https://www.gemeasurement.com/services/bently-nevada-training